A convenient synthesis of CF₃-containing alkynyl imines by a copper-free Sonogashira coupling of imidoyl chlorides with terminal alkynes Muwang Chen^a, Qiaochu Zhang^b, Xingguo Zhang^{a*}, Ping Zhong^a and Maolin Hu^a

^aCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P.R. China ^bCollege of Chemistry and Biological Engineering, Yichun University, Yichun 336000, P.R. China


A series of *N*-aryltrifluoroacetimidoyl chlorides and 1-alkynes were converted into α -imino alkynes by a Sonogashira reaction using Pd(PPh₃)₄/DABCO as the catalyst. The reaction proceeded smoothly to give the coupled products in good to excellent yields.

Keywords: N-aryltrifluoroacetimidoyl chlorides, a-imino alkynes, Sonogashira reaction

The introduction of a trifluoromethyl group into organic compounds is attractive due to their unique chemical,¹ physical, and biological properties.² The trifluoromethylated organic, inorganic, and organometallic compounds have been used in the fields of pharmaceutical, agrochemical, and polymer chemistry.^{3,4} Accordingly, the development of new reagents and improved techniques for the synthesis of the trifluoromethyl-containing organic compounds continues to be an important area of research in organofluorine chemistry.⁵ Extensive studies have been made to develop a cheaper and more efficient synthetic methodology for the introduction of the trifluoromethyl group into organic compounds.⁶

Trifluoromethyl alkynyl imines can serve as important building blocks for the synthesis of different heterocycles, such as quinolines,⁷ pyrazoles and pyrimidines.⁸ There are many approaches to the preparation of alkynyl imines.⁹⁻¹¹ Among them, the most straightforward and powerful is the Sonogashira coupling reaction of imidoyl halides with terminal alkynes using Pd(PPh)₂Cl₂ and CuI as the catalyst.¹²⁻¹⁴ However, the presence of CuI can result in the formation of some Cu(I) acetylides *in situ* which can readily produce an oxidative homocoupling reaction of the alkynes.¹⁵ This side reaction is problematic when the terminal acetylenes are difficult to obtain. To overcome this drawback, examples have been reported concerning palladium-catalysed Sonogashira coupling reactiong using copper-free reaction conditions.^{16,17}

It is well known that the sp^2 carbon-iodine bond is more reactive than carbon-chlorine bond in coupling reaction. Uneyama *et al.*¹⁸ reported the preparation of trifluoromethyl

alkynyl imines from the Sonogashira reaction of *N*-aryltrifluoroacetimidoyl iodides with 1-alkynes catalysed by PdCl₂/CuI.¹⁸ They also pointed that the corresponding chlorides were recovered intact in the same conditions. Herein, we would like to report our research result of copper-free Sonogashira reaction of *N*-aryltrifluoroacetimidoyl chlorides with 1-alkynes in the catalyst system of Pd(PPh₃)₄/DABCO.

The cross-coupling of N-(p-tolyl)-2,2,2-trifluoroacetimidoyl chloride(1**a**) with phenyl acetylene was chosen as the model reaction to optimise reaction conditions. DABCO was used as the base because triethylamine would evaporate at 110 °C. In screening the catalyst, Pd(OAc)₂, Pd(OOCCF₃)₂, Pd₂(dba)₃ and Pd(PPh₃)₄ were tested at room temperature or 110 °C in toluene. As shown in Table 1, Pd(PPh₃)₄ displayed higher catalytic activity than others. More importantly, increasing the reaction temperature accelerated the reaction to give 93% yield (entry 8). Note that 10 mol % catalyst was necessary and the yield of **3aa** decreased to 70% in the presence of only 5 mol % Pd(PPh₃)₄ (entry 9). In addition, the use of 1, 4-dioxane, acetonitrile or THF to replace toluene as solvent

	H_3C					
	1a	2a	3aa			
Entry	Catalyst/mol%ª	Solvent	Temperature/°C	3aa Y ields/% ^b		
1	Pd(OAc) ₂ (10)	Toluene	25	41		
2	$Pd(OOCCF_3)_2$ (10)	Toluene	25	36		
3	$Pd_2(dba)_3(10)$	Toluene	25	30		
4	$Pd(PPh_3)_4(10)$	Toluene	25	48		
5	Pd(OAc) ₂ (10)	Toluene	110	65		
6	$Pd(OOCCF_3)_2$ (10)	Toluene	110	54		
7	$Pd_{2}(dba)_{3}(10)$	Toluene	110	59		
8	$Pd(PPh_3)_4(10)$	Toluene	110	93		
9	$Pd(PPh_{3})_{4}(5)$	Toluene	110	70		
10	$Pd(PPh_3)_4(10)$	1,4-dioxane	100	43		
11	$Pd(PPh_3)_4(10)$	MeCN	80	41		
12	Pd(PPh ₃) ₄ (10)	THF	65	53		

 Table 1
 Optimisation of Sonogashira reaction of N-(p-tolyl)-2, 2, 2-trifluoroacetimidoyl chloride with phenylacetylene

^aReaction conditions were: **1a** (1.0 mmol), **2a** (1.2 mmol), DABCO(3.0 mmol) in solvent (3 ml). ^bIsolated yield.

* Correspondent. E-mail: zxg@wzu.edu.cn

afforded lower yield (entries 10–12). Therefore, the catalytic system of Pd(PPh₃)₄/DABCO in toluene was considered to be an efficient catalytic system for the Sonogashira cross-coupling of *N*-aryltrifluoroacetimidoyl chlorides. The results are summarised in Table 1.

With the optimised reaction conditions in hand, a series of N-aryltrifluoroacetimidoyl chlorides were converted to corresponding trifluoromethyl-containing alkynyl imines. The results are summarised in Table 2. All N-aryltrifluoroacetimidoyl chlorides reacted smoothly in the procedure and the products were isolated in excellent yields. Substituent effects of N-aryl have significant influence on yields. Electrondonating group in N-aryl (e.g. methyl or methoxy groups) raised the yields slightly (entries 1-7). On the contrary, electron-withdraw group in N-aryl reduced yields (entries 8-12). The strong electron-withdrawing group on the N-aryl (e.g. NO_2) reduced the stability of the coupling products. This resulted in the decomposition of the products and reduction of the yields¹⁹ (entry 15). In addition, o-substituents on the aryl ring reduced the yields (entries 13-15), due to the steric hindrance in the substrate.

In conclusion, we have successfully developed a method for the synthesis of trifluoromethylated α -imino alkynes by the cross-coupling reaction of *N*-aryl-trifluoroacetimidoyl chlorides with 1-alkyenes catalysed by Pd(PPh₃)₄/DABCO system.

Experimental

¹H NMR were determined in a CDCl₃ solution with a Bruker Avance300 (300 M Hz) spectrometer using tetramethylsilane as the internal standard. ¹⁹F NMR spectra were also obtained in a CDCl₃ solution on Bruker Avance300 (282.2 MHz) spectrometer using CFCl₃ as external standard. All chemical shifts (δ) were expressed in parts per million, and coupling constants (*J*) were given in Hertz. Column chromatography was performed using EM Silica gel 60 (300–400 mesh)

General procedure for the palladium-catalysed coupling reaction of phenylacetylene **2a** with N-(p-Tolyl)-2, 2, 2-trifluoroacetimidoyl chloride **1a**

N-(p-Tolyl)-2, 2, 2-trifluoroacetimidoyl chloride **1a** (221 mg, 1 mmol) and phenylacetylene **2a**(122 mg, 1.2 mmol) were added successively. To a mixture of Pd(PPh₃)₄(115 mg, 0.1 mmol), 1, 4-diazabicyclo[2.2.2] octane (DABCO) (336 mg, 3 mmol) in toluene (5 ml), The reaction mixture was stirred at 110 °C for 8 hours under N₂ atmosphere, then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on a silica gel using EtOAc/petroleum ether(1:10) as eluant to give the product.

The physical and spectra data of all compounds are as follows.

4-Methyl-N-(1, 1, 1-trifluoro-4-phenylbut-3-yn-2-ylidene)aniline (3aa): Yellowish oil. ¹H NMR: δ 7.42–7.47 (m, 3H), 7.32–7.39 (m, 4H), 7.24–7.27 (m, 2H), 2.41 (s, 3H); ¹⁹F NMR: δ 71.36(s); IR (neat, cm⁻¹): 3041, 2928, 2199, 1605, 1499, 1445, 1342, 1151; MS (ESI) *m/z* 288 (M + H⁺); Anal. Calcd for C₁₇H₁₂F₃N: C, 71.07; H, 4.21; N, 4.88. Found: C, 71.03; H, 4.19; N, 4.89%.

Methyl-N-(1,1,1-trifluoro-5-phenylpent-3-yn-2-ylidene)aniline (**3ab**): Yellowish solid, m.p. 95–96 °C ¹H NMR: δ 8.15 (d, J = 8.3 Hz, 1H), 8.11 (s, 1H), 7.64 (d, J = 8.3 Hz, 1H), 7.53 (s, 1H), 7.13–7.42 (m, 5H), 4.48 (s, 2H), 2.56 (s, 3H); ¹⁹F NMR: δ 71.64(s); IR (KBr, cm⁻¹): 3043, 2928, 2211, 1592, 1505, 1460, 1373, 1151; MS (ESI) *m/z* 302 (M + H⁺); Anal. Calcd for C₁₈H₁₄F₃N: C, 71.75; H, 4.68; N, 4.65. Found: C, 71.72; H, 4.65; N, 4.68%.

4-Methyl-N-(1, 1, 1-trifluorooct-3-yn-2-ylidene)aniline (3ac): Yellowish solid, m.p. 90–92 °C ¹H NMR: δ 8.11 (d, J = 8.6 Hz, 1H), 7.83 (s, 1H), 7.63 (d, J = 8.6 Hz, 1H),7.53 (s, 1H), 3.11 (t, J = 7.9 Hz 2H), 2.60 (s, 3H), 1.72–1.82 (m, 2H), 1.45–1.53 (m, 2H), 1.01 (t, J = 7.4 Hz, 3H); ¹⁹F NMR: δ 67.39(s); IR (KBr, cm⁻¹): 3043, 2928, 2864, 2211, 1593, 1505, 1460, 1373, 1154; MS (ESI) *m*/z 268 (M + H⁺); Anal. Calcd for C₁₅H₁₆F₃N: C, 67.40; H, 6.03; N, 5.24. Found: C, 67.36; H, 6.05; N, 5.22%.

4-Methyl-N-(1, 1, 1-trifluorooct-3-yn-2-ylidene)aniline (3ad): Yellowish solid, m.p. 84–86 °C ¹H NMR: δ 8.11 (d, J = 8.6 Hz, 1H), 7.83 (s, 1H), 7.61 (d, J = 8.6 Hz, 1H), 7.53 (s, 1H), 3.11 (t, J = 7.9 Hz 2H), 2.60 (s, 3H), 1.76–1.81 (m, 2H), 1.50–1.54 (m, 2H), 1.38–1.44 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H); ¹⁹F NMR: δ 67.38(s); . IR (KBr, cm⁻¹): 3043, 2928, 2864, 2211, 1593, 1505, 1460, 1373, 1154; MS (ESI) m/2 282 (M + H⁺); Anal. Calcd for C₁₆H₁₈F₃N: C, 68.31; H, 6.45; N, 4.98. Found: C, 68.28; H, 6.42; N, 4.97%. 4-Methoxy-N-(1,1,1-trifluoro-4-phenylbut-3-yn-2-ylidene)aniline

4-Methoxy-N-(1,1,1-trifluoro-4-phenylbut-3-yn-2-ylidene)aniline (**3ba**): Yellowish oil. ¹H NMR: 7.48–7.56 (m, 4H), 7.43–7.49 (m, 3H), 6.97 (d, J = 8.9 Hz, 2H), 3.86 (s, 3H); ¹⁹F NMR: δ 71.05(s); IR (neat, cm⁻¹): 2942, 2365, 1612, 1587, 1449, 1259, 1154; MS (ESI) *m*/z 304 (M + H⁺); Anal. Calcd for C₁₇H₁₂F₃NO: C, 67.32; H, 3.99; N, 4.62. Found: C, 67.36; H, 3.97; N, 4.61%.

4-Methoxy-N-(1,1,1-trifluoro-5-phenylpent-3-yn-2-ylidene)aniline (**3bb**): Yellowish solid m.p. 88–90 °C ¹H NMR: δ 8.12 (d, J = 9.3 Hz, 1H), 7.47 (s, 1H), 7.33–7.42 (m, 4H), 7.20–7.31 (m, 3H), 4.41 (s, 2H), 3.85 (s, 3H); ¹⁹F NMR: δ 71.18(s); IR (KBr, cm⁻¹): 3043, 2921, 2201, 1605, 1515, 1461, 1363, 1154; MS (ESI) *m*/z 318 (M + H⁺); Anal. Calcd for C₁₈H₁₄F₃NO: C, 68.13; H, 4.45; N, 4.41. Found: C, 68.09; H, 4.46; N, 4.39%.

4-Methoxy-N-(1,1,1-trifluoronon -3-yn-2-ylidene)aniline (3bc): Yellowish solid, m.p. 76–78 °C ¹H NMR: δ 7.42 (d, J = 8.9 Hz, 2H), 6.92 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H), 2.41 (t, J = 7.0 Hz, 2H), 1.54–1.59 (m, 2H), 1.33–1.36 (m, 2H), 1.30–1.32 (m, 2H), 0.96 (t, J = 6.8 Hz, 3H); ¹⁹F NMR: δ 67.37(s); IR (KBr, cm⁻¹): 3043, 2958, 2863, 2231,

Table 2 The Sonogashira reaction of N-aryltrifluoroacetimidoyl chlorides and 1-alkyne

		N ⁻ CF ₃ DABCO CF ₃					
Entry	Ar(1a–e)	R(2a–d)	Product 3	Yield/%ª			
1	4-CH₃-C₅H₄(1a)	Ph(2a)	3aa	93			
2	4-CH ₃ -C ₆ H₄(1a)	$C_{\theta}H_{5}CH_{2}(2b)$	3ab	95			
3	4-CH ₃ -C ₆ H₄(1a)	n-C₄H ₉ (2̃c)	3ac	94			
4	4-CH ₃ -C ₆ H₄(1a)	n-C ₅ H ₁₁ (2d)	3ad	96			
5	4-CH ₃ O-C ₆ H ₄ (1b)	Ph(2a)	3ba	95			
6	4-CH ₃ O-C ₆ H ₄ (1b)	C ₆ H ₅ CH ₂ (2b)	3bb	94			
7	4-CH ₃ O-C ₆ H ₄ (1b)	n-C ₅ H ₁₁ (2c)	3bc	87			
8	$4-CI-C_{\theta}H_{4}(1c)$	Ph(2a)	3ca	88			
9	$4-CI-C_{\Theta}H_{4}(1c)$	$C_6H_5CH_2(2b)$	3cb	73			
10	$4-CI-C_{\theta}H_{4}(1c)$	n-C₄H ₉ (2̃c)	3cc	83			
11	$4-CI-C_{\Theta}H_{4}(1c)$	n-C ₅ H ₁₁ (2d)	3cd	82			
12	$4-CI-C_{\theta}H_{4}(1c)$	n-C ₃ H ₇ (2e)	3ce	83			
13	2-CH ₃ -C ₆ H₄(1d)	Ph(2a)	3da	88			
14	2-CH ₃ -C ₆ H ₄ (1d)	$C_6H_5CH_2(2b)$	3db	81			
15	$2 - NO_2 - C_6 H_4(1e)$	Ph(2a)	3ea	60			
^a lsolated yield							

1593, 1505, 1470, 1373, 1152; MS (ESI) m/z 298 (M + H⁺); Anal. Calcd for C₁₆H₁₈F₃NO: C, 64.64; H, 6.10; N, 4.71. Found: C, 64.69; H, 6.13; N, 4.69%.

4-Chloro-N-(1,1,1-trifluoro-4-phenylbut-3-yn-2-ylidene)aniline (**3ca**): Yellowish oil. ¹H NMR: δ 7.42–7.47 (m, 3H), 7.32–7.39 (m, 4H), 7.24–7.29 (m, 2H); ¹⁹F NMR: δ 71.66(s); IR (neat, cm⁻¹): 3052, 2926, 2199, 1603, 1507, 1442, 1154; MS (ESI) *m/z* 308 (M + H⁺); Anal. Calcd for C₁₆H₉ClF₃N: C, 62.45; H, 2.95; N, 4.55. Found: C, 62.41; H, 2.96; N, 4.57%.

4-Chloro-N-(1,1,1-trifluoro-5-phenylpent-3-yn-2-ylidene)aniline (**3cb**): Yellowish solid, m.p. 106–108 °C ¹H NMR: δ 8.14 (d, J = 9.0 Hz, 1H), 8.05 (s, 1H), 7.70 (d, J = 9.0 Hz, 1H), 7.45 (s, 1H), 7.15–7.32 (m, 5H), 4.41 (s, 2H); ¹⁹F NMR: δ 71.83(s); IR (KBr, cm⁻¹): 3054, 2918, 2196, 1605, 1516, 1443, 1154; MS (ESI) *m*/z 322 (M + H⁺); Anal. Calcd for C₁₇H₁₁ClF₃N: C, 63.46; H, 3.45; N, 4.35. Found: C, 63.42; H, 3.43; N, 4.36%.

4-Chloro-N-(1, 1, 1-trifluorooct -3-yn-2-ylidene)aniline (3cc): Yellowish solid, m.p. 95–97 °C ¹H NMR: δ 8.16 (d, J = 9.0 Hz, 1H), 8.06 (s, 1H), 7.75 (d, J = 9.0 Hz, 1H), 7.58 (s, 1H), 3.10 (t, J = 8.0 Hz, 2H), 1.74–1.82 (m, 2H), 1.43–1.53 (m, 2H), 1.01 (t, J = 7.3 Hz, 3H); ¹⁹F NMR: δ 67.63(s); IR (KBr, cm⁻¹): 3042, 2961, 2219, 1621, 1599, 1495, 1376, 1154; MS (ESI) *m/z* 288 (M + H⁺); Anal. Calcd for C₁₄H₁₃ClF₃N: C, 58.44; H, 4.55; N, 4.87. Found: C, 58.48; H, 4.53; N, 4.85%.

4-Chloro-N-(1, 1, 1-triffuoronon-3-yn-2-ylidene)aniline (3cd): Yellowish solid, m.p. 96–98 °C ¹H NMR: δ 8.15 (d, J = 9.0 Hz, 1H), 8.05 (s, 1H), 7.73 (d, J = 9.0 Hz, 1H), 7.58 (s, 1H), 3.08 (t, J = 8.0 Hz, 2H), 1.76–1.83 (m, 2H), 1.47–1.60 (m, 2H), 1.37–1.46 (m, 2H), 0.93 (t, J = 7.1 Hz, 3H); ¹⁹F NMR: δ 67.65(s); IR (KBr, cm⁻¹): 3042, 2931, 2217, 1599, 1509, 1495, 1375, 1154; MS (ESI) *m/z* 302 (M + H⁺); Anal. Calcd for C₁₅H₁₅ClF₃N: C, 59.71; H, 5.01; N, 4.64. Found: C, 59.68; H, 5.02; N, 4.62%.

4-Chloro-N-(1, 1, 1-triffuorohept-3-yn-2-ylidene)aniline (3ce): Yellowish solid, m.p. 131–133 °C ¹H NMR: δ 8.15 (d, J = 9.0 Hz, 1H), 8.05 (s, 1H), 7.73 (d, J = 9.0 Hz, 1H), 7.58 (s, 1H), 3.07 (t, J = 7.6 Hz, 2H), 1.79–1.87 (m, 2H), 1.07 (t, J = 7.4 Hz, 3H); ¹⁹F NMR: δ 67.67(s); IR (KBr, cm⁻¹): 3042, 2961, 2299, 1691, 1599, 1495, 1376, 1154; MS (ESI) *m*/z 274 (M + H⁺); Anal. Calcd for C₁₃H₁₁ClF₃N: C, 57.05; H, 4.05; N, 5.12. Found: C, 57.09; H, 4.07; N, 5.09%.

2-Methyl-N-(1,1,1-trifluoro-4-phenylbut-3-yn-2-ylidene)aniline (3da): Yellowish oil. ¹H NMR: δ 7.42–7.55 (m, 3H), 7.24–7.36 (m, 4H), 7.16–7.19 (m, 2H), 2.83 (s, 3H); ¹⁹F NMR: δ 71.17(s); IR (neat, cm⁻¹): 3062, 2934, 2200, 1607, 1479, 1347, 1150; MS (ESI) m/z 288 (M + H⁺); Anal. Calcd for C₁₇H₁₂F₃N: C, 71.07; H, 4.21; N, 4.88. Found: C, 71.04; H, 4.18; N, 4.87%. 4-Methyl-N-(1,1,1-trifluoro-5-phenylpent-3-yn-2-ylidene)aniline (**3db**): Yellowish oil ¹H NMR: δ 7.88 (d, J = 8.2 Hz, 1H),7.57 (d, J = 8.2 Hz, 1H), 7.45 (t, J = 6.4 Hz, 2H),7.12–7.30 (m, 5H), 4.43 (s, 2H), 2.82 (s, 3H); ¹⁹F NMR: δ 71.26(s); IR (neat, cm⁻¹):3065, 2962, 2214, 1619, 1467, 1336, 1150; MS (ESI) *m*/z 302 (M + H⁺); Anal. Calcd for C₁₈H₁₄F₃N: C, 71.75; H, 4.68; N, 4.65. Found: C, 71.72; H, 4.70; N, 4.66%.

2-Nitro-N-(1,1,1-trifluoro-4-phenylbut-3-yn-2-ylidene)aniline (3ea): Yellowish oil. ¹H NMR: δ 7.53–7.54 (m, 4H), 7.26–7.36 (m, 5H).); ¹⁹F NMR: 71.70(s); IR (neat, cm⁻¹): 3065, 2922, 2236, 1591, 1479, 1152; MS (ESI) *m*/z 319 (M + H⁺). Anal. Calcd for C₁₆H₉F₃N₂O₂: C, 60.38; H, 2.85; N, 8.80. Found: C, 60.35; H, 2.83; N, 8.83.

We thank the Office of Education of Zhejiang Province (20070535) and Wenzhou Municipal Science and Technology Bureau (G20060075) for financial supports.

Received 26 June 2008; accepted 8 September 2008 Paper 08/0024 <u>doi: 10.3184/030823408X374224</u> Published online: 30 October 2008

References

- 1 B.E. Smart, J. Fluorine Chem., 2001, 109, 3.
- 2 D. Gimenez, C. Andreu and M. Olmo, et al. Bioorg. Med. Chem., 2006, 14, 6971.
- 3 G. Magueur, B. Crousse, S. Charneau, P. Grellierm, J.-P. Begue and D. Bonnet-Delpon, J. Med. Chem., 2004, 47, 2694.
- 4 A. Gryshuk, Y. Chen and L.N. Goswami, et al. J. Med. Chem., 2007, 50, 1754.
- 5 V.N. Korotchenko, A.V. Shastin, V.G. Nenajdenko and E.S. Balenkova, *Tetrahedron*, 2001, **57**, 7519.
- 6 G.K. Prakash, J. Hu and G.A. Olah, Org. Lett., 2003, 5, 3253.
- 7 H. Amii, Y. Kishikawa and K. Uneyama, Org. Lett., 2001, 3, 1109.
- 8 H.B. Yu and W.Y. Huang, J. Fluorine Chem., 1998, 87, 69.
- 9 K. Komeyama, D. Sasayama, T. kawabata, K. Takehira and K. Takaki, J. Org. Chem., 2005, 70, 10679.
- 10 G. Magueur, B. Crousse and D. Bonnet-Delpon, *Tetrahedron Lett.*, 2005, 46, 2219.
- 11 A.V. Kel'in, A.W. Sromek and V.J. Gevorgyan, J. Am. Chem. Soc., 2001, 123, 2074.
- 12 B.G. Van den Hoven and H. Alper, J. Am. Chem. Soc., 2001, 123, 10214.
- 13 R. Faust and B. Gobelt, Tetrahedron Lett., 1997, 38, 8017.
- 14 S.Y. Liu, H.Y. Sheng and Y.Z. Huang, Synthesis, 1991, 235
- 15 Z. Gu, Z.Z. Li, Z.C. Liu, Y. Wang, C.B. Liu and J.N. Xiang, Catal. Commun., 2008, 9, 2154.
- 16 B. Liang, M.J. Dai, J.H. Chen and Z. Yang, J. Org. Chem., 2005, 70, 391.
- 17 C.Y. Yi and R.M. Hua, J. Org. Chem., 2006, 71, 2535.
- K. Uneyama and H. Watanabe, *Tetrahedron Lett.*, 1991, 32, 1459.
- 19 Y.M. Wu, M. Zhang and Y.Q. Li, J. Fluorine Chem., 2006, 127, 218.